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1
NEURAL NETWORK FOR
REINFORCEMENT LEARNING

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of International
Patent Application No. PCT/US2013/041451 filed on May
16, 2013, which is related to and claims priority to U.S.
Provisional Patent Application Ser. No. 61/732,590 filed on
Dec. 3,2012, and to U.S. Non-Provisional patent application
Ser. No. 13/896,110 filed on May 16, 2013 which claims
priority to U.S. Provisional Patent Application Ser. No.
61/732,590 filed on Dec. 3, 2012, all of which are hereby
incorporated by reference in their entireties.

STATEMENT REGARDING FEDERAL
FUNDING

This invention was made under U.S. Government contract
DARPA SyNAPSE HR0011-09-C-0001. The U.S. Govern-
ment has certain rights in this invention.

TECHNICAL FIELD

This disclosure relates to neural networks, and in particular
to neural networks capable of action-selection and reinforce-
ment-learning. The technology here disclosed involves plas-
tic action-selection networks for neuromorphic hardware.

BACKGROUND

In the prior art, neural networks capable of action-selection
have been well characterized, as have those that demonstrate
reinforcement-learning. However, in the prior art, action-se-
lection and reinforcement-learning algorithms present com-
plex solutions to the distal reward problem, which are not
easily amenable to hardware implementations.

Barr, D., P. Dudek, J. Chambers, and K. Gurney describe in
“Implementation of multi-layer leaky integrator networks on
a cellular processor array” Neural Networks, 2007. [JCNN
August 2007. International Joint Conference, pp. 1560-1565,
a model of the basal ganglia on a neural processor array. The
software neural model was capable of performing action
selection. However, Barr et al. did not describe any inherent
mechanisms for reinforcement-learning and the micro-chan-
nels of the basal ganglia were predefined.

Merolla, P., J. Arthur, F. Akopyan, N. Imam, R. Manohar,
and D. Modha describe in “A digital neurosynaptic core using
embedded crossbar memory with 45 pj per spike in 45 nm”
Custom Integrated Circuits Conference (CICC), September
2011 IEEE, pp. 1-4, a neuromorphic processor capable of
playing a game of pong against a human opponent. However,
the network was constructed oft-line and once programmed
on the hardware, remained static.

What is needed is a neural network that implements action-
selection and reinforcement-learning and that can be more
readily implemented with hardware. The embodiments of the
present disclosure answer these and other needs.

SUMMARY

In a first embodiment disclosed herein, a neural network
for reinforcement-learning and for action-selection com-
prises a plurality of channels, a population of input neurons in
each of the channels, a population of output neurons in each
of the channels, each population of input neurons in each of
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the channels coupled to each population of output neurons in
each of the channels and a population of reward neurons in
each of the channels, wherein each population of reward
neurons receives input from an environmental input, and
wherein each channel of reward neurons is coupled only to
output neurons in a channel that the reward neuron is part of,
wherein if the environmental input for a channel is positive,
the corresponding channel of a population of output neurons
are rewarded and have their responses reinforced, and
wherein if the environmental input for a channel is negative,
the corresponding channel of a population of output neurons
are punished and have their responses attenuated.

In another embodiment disclosed herein, a neural network
for reinforcement-learning and for action-selection com-
prises a plurality of channels, a population of input neurons in
each of the channels, a population of output neurons in each
of the channels, each population of input neurons in each of
the channels coupled to each population of output neurons in
each of the channels, a population of reward neurons in each
of the channels, wherein each population of reward neurons
receives input from an environmental input, and wherein each
channel of reward neurons is coupled only to output neurons
in a channel that the reward neuron is part of, and a population
of inhibition neurons in each of the channels, wherein each
population of inhibition neurons receive an input from a
population of output neurons in a same channel that the popu-
lation of inhibition neurons is part of, and wherein a popula-
tion of inhibition neurons in a channel has an output to output
neurons in every other channel except the channel of which
the inhibition neurons are part of, wherein if the environmen-
tal input to a population of reward neurons for a channel is
positive, the corresponding channel of a population of output
neurons are rewarded and have their responses reinforced,
and wherein if the environmental input to a population of
reward neurons for a channel is negative, the corresponding
channel of a population of output neurons are punished and
have their responses attenuated.

In yet another embodiment disclosed herein, a basal gan-
glia neural network comprises a plurality of channels, a popu-
lation of cortex neurons in each of the channels, a population
of striatum neurons in each of the channels, each population
of striatum neurons in each of the channels coupled to each
population of cortex neurons in each of the channels, a popu-
lation of reward neurons in each of the channels, wherein each
population of reward neurons receives input from an environ-
mental input, and wherein each channel of reward neurons is
coupled only to striatum neurons in a channel that the reward
neuron is part of, and a population of Substantia Nigra pars
reticulata (SNr) neurons in each of the channels, wherein each
population of SNr neurons is coupled only to a population of
striatum neurons in a channel that the SNr neurons are part of,
wherein if the environmental input to a population of reward
neurons for a channel is positive, the corresponding channel
of a population of striatum neurons are rewarded and have
their responses reinforced, wherein if the environmental input
to a population of reward neurons for a channel is negative,
the corresponding channel of a population of striatum neu-
rons are punished and have their responses attenuated, and
wherein each population of SNr neurons is tonically active
and is suppressed by inhibitory afferents of striatum neurons
in a channel that the SNr neurons are part of.

These and other features and advantages will become fur-
ther apparent from the detailed description and accompany-
ing figures that follow. In the figures and description, numer-
als indicate the various features, like numerals referring to
like features throughout both the drawings and the descrip-
tion.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a neural network in accordance with the
present disclosure;

FIG. 2 shows another neural network with lateral inhibition
in accordance with the present disclosure;

FIG. 3 shows a basal ganglia neural network in accordance
with the present disclosure;

FIGS. 4A, 4B, and 4C show an example of a reward-
learning scenario in accordance with the present disclosure;

FIGS. 5A, 5B, 5C, 5D, 5E and 5F show an example of
synaptic weights for a neural network in accordance with the
present disclosure;

FIG. 6 is a diagram showing a pong style virtual environ-
ment in accordance with the present disclosure;

FIGS.7A, 7B and 7C, 8A, 8B and 8C, and 9A, 9B, 9C, 9D,
9E, 9F, 9G, 9H, 91, 9J, 9K and 9L. illustrate results for the pong
style virtual environment of FIG. 6 for different spatial widths
and time spans in accordance with the present disclosure; and

FIG. 10 illustrates the overall accuracy for the model with
a spatial width of 0.025 in accordance with the present dis-
closure.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to clearly describe various specific embodiments
disclosed herein. One skilled in the art, however, will under-
stand that the presently claimed invention may be practiced
without all of the specific details discussed below. In other
instances, well known features have not been described so as
not to obscure the invention.

The combination of action-selection and reinforcement-
learning in biological entities is essential for successfully
adapting and thriving in any environment. This is also true for
the successful operation of intelligent agents. Presented here
are the design and implementation of biologically inspired
action selection/reinforcement-networks for the control of an
agent by a neuromorphic processor.

The embodied modeling can be described as the coupling
of computational biology and engineering. Historically strat-
egies for embedding artificial intelligence have failed to result
in agents with truly emergent properties. Because of this it is
still unreasonable to deploy a robotic entity and expect it to
learn from its environment the way biological entities can.
Similarly, neural models require complex and varied input
signals in orderto accurately replicate the activity observed in
vivo. One method for creating these complex stimuli is
through immersing a model in a real or virtual environment
capable of providing feedback.

Conceptually, action selection is the arbitration of compet-
ing signals. In the mammalian nervous system the complex
circuitry of the basal ganglia (BG) is active in gating the
information flow in the frontal cortex by appropriately select-
ing between input signals. This selection mechanism can
affect simple action all the way up to complex behaviors and
cognitive processing. Although overly simplified, it can be
helpful to relate the BG to a circuit multiplexer that actively
connecting inputs to outputs based on the current system
state.

Reinforcement or reward learning (RL) is the reinforce-
ment of actions or decisions that maximizes the positive out-
come of those choices. This is similar to instrumental condi-
tioning where stimulus response trials result in reinforcement
of responses that are rewarded and attenuation of those that
are not. Reinforcement-learning in a neural network is an
ideal alternative to supervised learning algorithms. Where
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4

supervised learning requires an intelligent teaching signal
that must have a detailed understanding of the task, reinforce-
ment learning can develop independent of the task without
any prior knowledge. Only the quality of the output signal in
response to the input signal and current contextual state of the
network is needed.

In an embodiment according to the present disclosure,
neurons within a neural network may be modeled by a Leaky-
Integrate and Fire (LIF) model. The LIF model is defined by
equation 1.

e v M

i —8teak(V = Eyest) + 1.

where

Cm is the membrane capacitance,

1 is the sum of external and synaptic currents,

gleak is the conductance of the leak channels, and

Erest is the reversal potential for that particular class of
synapse.

As the current input into the model neuron is increased the
membrane voltage will proportionally increase until a thresh-
old voltage is reached. At this point an action potential is fired
and the membrane voltage is reset to the resting value. The
neuron model is placed in a refractory period for 2 millisec-
onds where no changes in membrane voltages are allowed. If
the current is removed before reaching the threshold, the
voltage will decay to Erest. The LIF model is one of the least
computationally intensive neural models but is still capable of
replicating many aspects of neural activity.

The connections between neurons or synapses are modeled
by conductance-based synapses. The general form of that
influence is defined as equation 2.

8aynGmax Gegf (VL) ()]

where

gmax is the maximum conductance for that particular class
of synapse,

geft is the current synaptic efficacy between [0, geffmax],
and

Esyn is the reversal potential for that particular class of
synapse.

To simulate the buffering and re-uptake of neurotransmit-
ters, the influence that a presynaptic action potential has on a
neuron can be decayed based on a specified time constant.
This process is abstracted using equation 3.

dg” @

Ton—g— =g+ DI Wps—1p.

Learning at the synaptic level is achieved through the
spike-timing dependent plasticity rules described in Song, S.,
K. D. Miller, and L. F. Abbott (2000), “Competitive Hebbian
Learning through Spike-timing Dependent Synaptic Plastic-
ity” Nature Neuroscience (9) 2000, pp. 919-926, as shown in
equation 4.

8ef 8 eftSepmadt (AL)
where

Q)

AL = Tpre = Tpost

F(AD) =
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-continued
if
(g <0)
then
ger — 0
if
(geff > geffimax)
then

geff — geffmmax

The global parameter values that may be used in one
embodiment are presented in Table 1. The governing equa-
tions are numerically integrated using Fuler integration with
a 1 milliseconds (ms) time step.

TABLE 1

Global model parameters.

Parameter Value

C,, 1. (pF)
Tee 5. (ms)
T 100. (ms)
E e 0. (mV)
Eim -80. (mV)
Voest 0. (mV)
A, 0.025

A_ 0.026

T, 20. (ms)
T 20. (ms)

FIGS. 1 to 3 show three different neural network embodi-
ments. Initially, each of these networks has no knowledge or
inherent understanding of their environment. The behavior is
learned through feedback from the environment in the form of
reward and punishment signals encoded as either random or
structured spike events. These signals strengthen or weaken
the synaptic connections between neurons; reinforcing the
appropriate action.

The first model, shown in FIG. 1, is a simple feed-forward
network that consists entirely of excitatory neurons arranged
into N channels. The neural network of FIG. 1 has N channels.
Each ofthe N channels has a population of input neurons 12,
apopulation of output neurons 14, and a population of reward
neurons 16.

In one embodiment the populations of input neurons 12 are
connected with equal probability and equal conductance to all
of'the populations of output neurons 14, ensuring that there is
no inherent bias to a particular input-output pair. In another
embodiment, the populations of input neurons 12 are con-
nected randomly to the populations of output neurons 14.
This embodiment is particularly important to large-scale
implementations of these networks as well as afferent limita-
tions imposed by a neuromorphic architecture.

Each channel of a population of input neurons 12 is con-
nected to each channel of a population of output neurons 14
channel by synapses 18. One set of parameters that may be
used with the model of FIG. 1 is presented in Table 2. The
synapse connections 18 between input neurons 12 and output
neurons 14 are randomly created from the entire input neuron
12 population to ensure that there is no bias between input and
output channels.

Reward neurons 16 receive input from environmental
inputs 20, which may be sensed from the environment. Each
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channel of reward neurons is coupled to only one correspond-
ing channel of output neurons 20 via synapses 22. If the
environmental inputs for a channel are positive, the corre-
sponding channel of output neurons 14 are rewarded and have
their responses reinforced. If the environmental inputs for a
channel are negative, the corresponding channel output neu-
rons 14 are punished and have their responses attenuated.

The input neurons 12, the output neurons 14 and the reward
neurons 16 may be modeled by the Leaky-Integrate and Fire
(LIF) model defined by equation 1. The synapses 18 and 22
may be modeled by the spike-timing dependent plasticity
(STDP) of equation 4.

TABLE 2

Parameters for the excitatory only network.

A. Neuron parameters

Neurons
Neural Region Per Channel
Input 3
Output 3
Reward 1

B. Connections

Synaptic Conductance
(8max) " (8ep)

Number of Incoming

Source — Destination Connections (total)

Input — Output
Reward — Input

(10.0) - (0.25) 15
(10.0) - (1.0) 1

FIG. 2 shows another neural network with lateral inhibition
between the output populations in accordance with the
present disclosure. The neural network of FIG. 2 creates an
on-center oft-surround network where the most active popu-
lation suppresses the other output populations. Not only is
this a more biologically realistic network but it also offers
more control in the selection process. One set of parameters
for this model may be the parameters shown in Table 3. A key
aspect of the neural network is the diffuse connections of the
inhibition neurons 36. Each channel of a population of inhi-
bition neurons 36 project to every other channel of output
neurons 32, excluding the channel of which the population of
inhibition neurons 36 are a part of.

The neural network of FIG. 2 has N channels. Each of the
N channels has a population of input neurons 30, a population
of output neurons 32, a population of reward neurons 34, and
a population of inhibition neurons 36. Each channel of a
population of input neurons 30 is connected to each channel
of'a population of output neurons 32 channel by synapses 38.

In one embodiment the populations of input neurons 30 are
connected with equal probability and equal conductance to all
of'the populations of output neurons 32, ensuring that there is
no inherent bias to a particular input-output pair. In another
embodiment, the synapse connections 38 between the popu-
lations of input neurons 30 and the populations of output
neurons 32 are connected randomly from the entire popula-
tion of input neurons 30.

Each channel of'a population of reward neurons 34 receives
inputs from environmental inputs 40, which may be sensed
from the environment. Each channel of a population of
reward neurons 34 is coupled to only one corresponding
channel of a population of output neurons 32 via synapses 42.
If the environmental inputs for a channel are positive, the
corresponding channel of output neurons 32 are rewarded and
have their responses reinforced. If the environmental inputs
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for a channel are negative, the corresponding channel output
neurons 32 are punished and have their responses attenuated.
Each channel of a population of output neurons 32 are
connected by synapses 46 to a corresponding channel of a
population of inhibition neurons 36. The inhibition neurons
36 in a channel are coupled via synapses 44 to output neurons
32 in every other channel; however the inhibition neurons 36
in a channel are not coupled to output neurons 32 of the
channel of which the inhibition neurons 36 are part of.
Astheresponses from the output neurons 32 of a channel of
which the inhibition neurons 36 are part of increase, the
inhibition neurons 36 may via the synapses 44 inhibit the
responses from output neurons 32 in every other channel.
The input neurons 30, the output neurons 32, the reward
neurons 34, and the inhibition neurons 36 may be modeled by
the Leaky-Integrate and Fire (LIF) model defined by equation
1. The synapses 38, 42, 44 and 46 may be modeled by the
spike-timing dependent plasticity (STDP) of equation 4.

TABLE 3

Parameters for the lateral-inhibition network.

A. Neuron parameters

Neurons

Neural Region Per Channel
Input 3
Output 3
Inhibition 3
Reward 1

B. Connections

Synaptic Conductance
(Bmax) " (2o

Number of Incoming

Source — Destination Connections (total)

Input — Output (10.0) - (0.25) 15
Output — Inhibition (10.0) - (1.0) 15
Inhibition — Output (10.0) - (1.0) 15

Reward — Input (10.0) - (1.0) 1

FIG. 3 shows a basal ganglia (BG) neural network in accor-
dance with the present disclosure. The neural network of FIG.
3 emulates the physiological activity of the BG direct path-
way, where the Substantia Nigra pars reticulata (SNr) neurons
56 are tonically active, firing around 30 Hz. The substantia
nigra is part of the basal ganglia and the pars reticulata is part
of the substantia nigra. The basal activity of the SNr neurons
56 is suppressed by the inhibitory afferents of the striatum
neurons 52, resulting in a disinhibitory mechanism of action.
Learning occurs between the cortex neurons 50 and the stria-
tum neurons 52 to develop the appropriate input-output chan-
nel combinations. One set of parameters that may be use this
model are shown in Table 4.

TABLE 4

Parameters for the basal ganglia direct pathway.

A. Neuron parameters

Neurons

Neural Region Per Channel
Cortex (Ctx) 4
Striatum (Str) 3
Substantia Nigra 3

pars reticulata (SNr)

Excitatory 9
Reward 6
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TABLE 4-continued

Parameters for the basal ganglia direct pathway.

B. Connections

Number of Incoming

Synaptic Connections
Source — Destination Conductance (per channel)
Ctx — Str 0.1 4
Str — Str (diffuse) 10.0 3
Excitatory — SNr 0.08 3
Str — SNr 10.0 3
Reward — Str 10.0 6

Physiologically, the SNr neurons 54 are tonically active.
However, the LIF neuron of equation 1 is not capable of
replicating that spontaneous activity. To compensate, a Pois-
son random excitatory input 68 is injected into the SNrneuron
populations 56. In addition, low-level uniform random noise
may be injected into the network.

The neural network of FIG. 3 has N channels. Each of the
N channels has a population of cortex neurons 50, a popula-
tion of striatum neurons 52, a population of reward neurons
54, and a population of SNr neurons 56. Each channel of
cortex neurons 50 is connected to each striatum neuron chan-
nel by synapses 58.

In one embodiment the populations of cortex neurons 50
are connected with equal probability and equal conductance
to all of the populations of striatum neurons 52, ensuring that
there is no inherent bias to a particular cortex-striatum pair. In
another embodiment, the populations of cortex neurons 50
are connected randomly to the populations of striatum neu-
rons 52.

The population of striatum neurons 52 in a channel is
connected to the population of striatum neurons 52 in every
other channel by synapses 60.

Reward neurons 54 receive input from environmental
inputs 62, which may be sensed from the environment. Each
channel of reward neurons 54 is coupled to only to the corre-
sponding channel of striatum neurons 52 of which the reward
neurons 54 are part of via synapses 64. If the environmental
inputs for a channel are positive, the corresponding channel of
striatum neurons 52 are rewarded and have their responses
reinforced. If the environmental inputs for a channel are nega-
tive, the corresponding channel striatum neurons 52 are pun-
ished and have their responses attenuated.

Each channel of striatum neurons 52 are connected by
synapses 66 only to a corresponding channel of SNr neurons
56. A Poisson random excitatory input 68 is injected into each
channel of SNr neurons 56.

The cortex neurons 50, the striatum neurons 52, the reward
neurons 54, and the SNr neurons 56 may be modeled by the
Leaky-Integrate and Fire (LIF) model defined by equation 1.
The synapses 58, 60, 64 and 66 may be modeled by the
spike-timing dependent plasticity (STDP) of equation 4.

Learning in these networks is driven by a conditioned
stimulus injection. Stereotyped spiking signals may be sent to
an input population and all of the reward populations. The
timing of the signal is delayed for the target channel so the
synaptic learning between the input population and the
desired output populations is potentiated, while all other
channels are depressed. The timing of these signals are
dependent on the values chosen in Equation 4. Punishment
signals can be injected by removing the delay from the target
reward population and suppressing the activity of the other
output populations.
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This is only one way of exploiting the architecture of these
networks to create arbitrary input/output combinations. Any
Hebbian, actor-critic, reward-modulated or distal-reward
learning rule can be applied to achieve the same modulation
of the synaptic weights.

Similarly, the LIF neuron is only an example of a neural
model that can be used. Any mathematical model capable of
integrating multiple signals and converting that into discrete
time events can be employed in these networks.

Finally, the specific connectivity is not crucial to the per-
formance; increasing the number of connections per cell can
improve the stability and plasticity.

The model of FIG. 1 has been implemented under the
constraints of an initial memristor based neuromorphic pro-
cessor. An example reward-learning scenario is illustrated in
FIGS. 4A-4C. FIG. 4A shows an activity rate map of the
example scenario. The activity was calculated using a moving
Gaussian weighted window. FIG. 4B shows a spike raster of
the input populations. FIG. 4C shows a spike raster of the
output populations.

The stages are marked by the letters in the center of FIG.
4A.FIGS. 5A-5F show the synaptic weights at 0 sec., 10 sec.,
11 sec., 21 sec., 22 sec, and 33 sec., respectively.

In stage A, the network is initialized with all input/output
connections have a synaptic USE value of 0.25; as illustrated
in FIG. 5A by the heat map of the average weights between
input/output populations.

In stage B, a Poisson random input is injected into con-
secutive channels for 10 seconds to establish the basal activity
of'the network. The resulting average synaptic weight matrix
is shown in FIG. 5B.

In stage C, alternating reward signals are sent to establish
single input/output pairs. The weight matrix is now domi-
nated by the diagonal shown in FIG. 5C.

In stage D, the repeated Poisson input signals from B.,
above, are injected for 10 seconds. After this, the weight
matrix shown in FIG. 5D demonstrates further potentiation of
the established input/output pairs and a continued depression
of the other connections.

In stage E, an opposite set of input/output associations are
established using alternating reward signals. For stable
retraining of the network the reward protocol needs to be
about twice as long as the original training. The new weight
matrix is shown in FIG. 5E.

In stage F, 10 seconds of the repeated Poisson inputs illus-
trate the newly established input/output pairs in FIG. SF.

To illustrate the lateral inhibition network a pong style
virtual environment was implemented. FIG. 6 is a mock-up of
that environment. The position of the puck 70 in the game
space is sent to a number of discretized neural channels. Each
of these channels in essence represents a vertical column of
the game board. The inputs are Poisson random spiking
events with a rate defined by a Gaussian curve, described
below. This provides a noisy input signal with overlap
between channels. The networks signal, through a winner-
takes-all mechanism, the position of the paddle 72.

Initially, the network has no knowledge or inherent under-
standing of how to play the game. The behavior is learned
through feedback provided as reward and punishment signals
encoded as random spike events. The stimulus into the net-
work is determined by the location of the puck 70 to each of
the spatial channels. The signal strength for each spatial chan-
nel is computed by sampling a Gaussian function based on the
location of the channel. The location of the puck 70 on the
map determines the peak amplitude and center of a Gaussian
function defined as
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where

a is a peak amplitude of the Gaussian function,

b is a center of the Gaussian function,

c is a spatial width of the Gaussian function, and

Xc is the non-dimensional location of the channel.

The peak amplitude and Gaussian center are defined as
a=Y*R 2

max

b=x* 3)

where

Y* is the non-dimensional location of the puck in the y
dimension,

Rmax is the maximum input stimulus in spikes/s, and

X* Non-dimensional location of the puck in the x dimen-
sion.

This is visualized in FIGS. 7A, 7B and 7C for a spatial
width, ¢, of 0:05. The reward or punishment to the network
arrives when the puck 70 reaches the bottom of the game
board 74. FIG. 7A shows an example stimulus map for two
spatial channels. FIG. 7B shows a stimulus overlap between
two consecutive spatial channels. FIG. 7C shows an example
stimulus for different locations of the puck 70.

FIGS. 8A, 8B and 8C, and 9A, 9B, 9C, 9D, 9E, 9F, 9G, 9H,
91, 9J, 9K and 9L show the results for a spatial width, c, of
0:025 at FIG. 8A 0-25 sec., FIG. 8B 50-75 sec., and FIG. 8C
125-150 sec. FIG. 10 shows the overall accuracy for the
model with a spatial width, ¢, of 0:025.

The neural networks of FIGS. 1-3 may be implemented
with passive and active electronics components including
transistors, resistors, and capacitors. The neural networks
may also be implemented with computers or processors. One
type of processor that may be used is a memristor based
neuromorphic processor.

Having now described the invention in accordance with the
requirements of the patent statutes, those skilled in this art
will understand how to make changes and modifications to
the present invention to meet their specific requirements or
conditions. Such changes and modifications may be made
without departing from the scope and spirit of the invention as
disclosed herein.

The foregoing Detailed Description of exemplary and pre-
ferred embodiments is presented for purposes of illustration
and disclosure in accordance with the requirements of the
law. It is not intended to be exhaustive nor to limit the inven-
tion to the precise form(s) described, but only to enable others
skilled in the art to understand how the invention may be
suited for a particular use or implementation. The possibility
of modifications and variations will be apparent to practitio-
ners skilled in the art. No limitation is intended by the descrip-
tion of exemplary embodiments which may have included
tolerances, feature dimensions, specific operating conditions,
engineering specifications, or the like, and which may vary
between implementations or with changes to the state of the
art, and no limitation should be implied therefrom. Applicant
has made this disclosure with respect to the current state of the
art, but also contemplates advancements and that adaptations
in the future may take into consideration of those advance-
ments, namely in accordance with the then current state of the
art. It is intended that the scope of the invention be defined by
the Claims as written and equivalents as applicable. Refer-
enceto a claim element in the singular is not intended to mean
“one and only one” unless explicitly so stated. Moreover, no
element, component, nor method or process step in this dis-
closure is intended to be dedicated to the public regardless of
whether the element, component, or step is explicitly recited
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in the Claims. No claim element herein is to be construed
under the provisions of 35 U.S.C. Sec. 112, sixth paragraph,
unless the element is expressly recited using the phrase
“means for . . . ” and no method or process step herein is to be
construed under those provisions unless the step, or steps, are
expressly recited using the phrase “comprising the step(s)
of....”
Concepts
This writing discloses at least the following concepts:
Concept 1. A neural model for reinforcement-learning and for
action-selection comprising:
a plurality of channels;
a population of input neurons in each of the channels;
a population of output neurons in each of the channels,
each population of input neurons in each of the channels
coupled to each population of output neurons in each of
the channels; and
a population of reward neurons in each of the channels,
wherein each population of reward neurons receives
input from an environmental input, and wherein each
channel of reward neurons is coupled only to output
neurons in a channel that the reward neuron is part of;,
wherein if the environmental input for a channel is positive,
the corresponding channel of a population of output
neurons are rewarded and have their responses rein-
forced; and
wherein if the environmental input for a channel is nega-
tive, the corresponding channel of a population of output
neurons are punished and have their responses attenu-
ated.
Concept 2. The neural model of Concept 1 wherein each
population of output neurons in each of the channels are
coupled to each population of input neurons in each of the
channels by a synapse having spike-timing dependent plas-
ticity behaving according to

Lef Lot Eepmart (AD)

where

AL = Tpre = Tpost
At
A+e(ﬁ)
F(AD = N
A_el)
if
(8er < 0)

then

ger >0

if

(& > Zeffinax)

then

8eff = 8efiinax-

Concept 3. The neural model of Concept 1 wherein each
population of input neurons, each population of output neu-
rons, and each population of reward neurons are modeled
with a Leaky-Integrate and Fire (LIF) model behaving
according to

\4
T —8teak (V — Eyest) + 1.
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where

Cm is the membrane capacitance,

1 is the sum of external and synaptic currents,

gleak conductance of the leak channels, and

Erest is the reversal potential for that particular class of

synapse.

Concept 4. The neural model of Concept 1 wherein the popu-
lations of input neurons are connected with equal probability
and equal conductance to all of the populations of output
neurons.

Concept 5. The neural model of Concept 1 wherein the popu-
lations of input neurons are connected randomly to the popu-
lations of output neurons.

Concept 6. The neural model of Concept 1 wherein the neural
model is implemented with a memristor based neuromorphic
processor.

Concept 7. A neural model for reinforcement-learning and for
action-selection comprising:

a plurality of channels;

a population of input neurons in each of the channels;

a population of output neurons in each of the channels,
each population of input neurons in each of the channels
coupled to each population of output neurons in each of
the channels;

a population of reward neurons in each of the channels,
wherein each population of reward neurons receives
input from an environmental input, and wherein each
channel of reward neurons is coupled only to output
neurons in a channel that the reward neuron is part of}
and

a population of inhibition neurons in each of the channels,
wherein each population of inhibition neurons receive
an input from a population of output neurons in a same
channel that the population of inhibition neurons is part
of, and wherein a population of inhibition neurons in a
channel has an output to output neurons in every other
channel except the channel of which the inhibition neu-
rons are part of;

wherein if the environmental input to a population of
reward neurons for a channel is positive, the correspond-
ing channel of a population of output neurons are
rewarded and have their responses reinforced; and

wherein if the environmental input to a population of
reward neurons for a channel is negative, the corre-
sponding channel of a population of output neurons are
punished and have their responses attenuated.

Concept 8. The neural model of Concept 7 wherein:

each population of output neurons in each of the channels

are coupled to each population of input neurons in each of the
channels by a synapse having spike-timing dependent plas-
ticity;

each channel of reward neurons is coupled to output neu-

rons by a synapse having spike-timing dependent plasticity;

the input to each population of inhibition neurons from a

population of output neurons in a same channel that the popu-
lation of inhibition neurons is part of is by a synapse having
spike-timing dependent plasticity; and
the output from each population of inhibition neurons in a
channel is coupled to output neurons in every other channel
except the channel of which the inhibition neurons are part of
by a synapse having spike-timing dependent plasticity;

wherein the spike-timing dependent plasticity of each syn-
apse behaves according to

8ef 8 eftSepmadt (AL)
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where

AL = Tpre = Tpost
Ar
A+e(ﬁ)
F(AD = N
A_gT)

if
(8 <0)

then

ger >0

if

(& > Zefpinax)

then

8eff = 8efiinax-

Concept 9. The neural model of Concept 7 wherein each
population of input neurons, each population of output neu-
rons, each population of reward neurons, and each population
of inhibition neurons are modeled with a Leaky-Integrate and
Fire (LIF) model behaving according to

dav
Con—gr = ~8ueat(V — Epest) +1.

where

Cm is the membrane capacitance,

1 is the sum of external and synaptic currents,

gleak conductance of the leak channels, and

Erest is the reversal potential for that particular class of

synapse.

Concept 10. The neural model of Concept 7 wherein the
populations of input neurons are connected with equal prob-
ability and equal conductance to all of the populations of
output neurons.

Concept 11. The neural model of Concept 7 wherein the
populations of input neurons are connected randomly to the
populations of output neurons.

Concept 12. The neural model of Concept 7 wherein as a
response increases from output neurons of a channel of which
a population of inhibition neurons is part of, the inhibition
neurons inhibit the responses from populations of output
neurons in every other channel.

Concept 13. The neural model of Concept 7 wherein the
neural model is implemented with a memristor based neuro-
morphic processor.

Concept 14. A basal ganglia neural network model compris-
ing:

a plurality of channels;

a population of cortex neurons in each of the channels;

a population of striatum neurons in each of the channels,
each population of striatum neurons in each of the chan-
nels coupled to each population of cortex neurons in
each of the channels;

a population of reward neurons in each of the channels,
wherein each population of reward neurons receives
input from an environmental input, and wherein each
channel of reward neurons is coupled only to striatum
neurons in a channel that the reward neuron is part of}
and
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apopulation of Substantia Nigra pars reticulata (SNr) neu-
rons in each of the channels, wherein each population of
SNr neurons is coupled only to a population of striatum
neurons in a channel that the SNr neurons are part of;,

wherein if the environmental input to a population of
reward neurons for a channel is positive, the correspond-
ing channel of a population of striatum neurons are
rewarded and have their responses reinforced;

wherein if the environmental input to a population of
reward neurons for a channel is negative, the corre-
sponding channel of a population of striatum neurons
are punished and have their responses attenuated; and

wherein each population of SNr neurons is tonically active
and is suppressed by inhibitory afferents of striatum
neurons in a channel that the SNr neurons are part of.

Concept 15. The basal ganglia neural network model of Con-
cept 14 wherein:

each population of cortex neurons in each of the channels
are coupled to each population of striatum neurons in each of
the channels by a synapse having spike-timing dependent
plasticity;

each population of striatum neurons in a channel are
coupled to striatum neurons in every other channel by a syn-
apse having spike-timing dependent plasticity;

each channel of reward neurons is coupled to a population
of striatum neurons in a same channel by a synapse having
spike-timing dependent plasticity;

each population of SNr neurons is coupled to a population
of striatum neurons in a same channel that the population of
SNr neurons is part of by a synapse having spike-timing
dependent plasticity; and

wherein the spike-timing dependent plasticity of each syn-
apse behaves according to
8ef Lot Eemart (AD)

where

N

F(AD) =

if

(g5 <0)
then

ger >0

if

(& > Zefpinax)

then

8eff = effnax-

Concept 16. The basal ganglia neural network model of Con-
cept 14 wherein each population of cortex neurons, each
population of striatum neurons, each population of reward
neurons, and each population of SNr neurons are modeled
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with a Leaky-Integrate and Fire (LIF) model behaving
according to

dav

i —8leak (V = Evest) + 1.

C
d

where

Cm is the membrane capacitance,

1 is the sum of external and synaptic currents, gleak con-

ductance of the leak channels, and

Erest is the reversal potential for that particular class of
synapse.
Concept 17. The basal ganglia neural network model of Con-
cept 14 wherein the populations of cortex neurons are con-
nected with equal probability and equal conductance to all of
the populations of striatum neurons.
Concept 18. The basal ganglia neural network model of Con-
cept 14 wherein the populations of cortex neurons are con-
nected randomly to the populations of striatum neurons.
Concept 19. The basal ganglia neural network model of Con-
cept 14 wherein a Poisson random excitation is injected into
the populations of SNr neurons.
Concept 20. The basal ganglia neural network model of Con-
cept 14 wherein uniform random noise is injected into the
populations of SNr neurons.
Concept 21. The basal ganglia neural network model of Con-
cept 14 wherein the basal ganglia neural network model is
implemented with a memristor based neuromorphic proces-
sor.

What is claimed is:

1. A neural network for reinforcement-learning and for

action-selection comprising:

a plurality of channels;

a population of input neurons in each of the channels;

a population of output neurons in each of the channels,
each population of input neurons in each of the channels
coupled to each population of output neurons in each of
the channels by first synapses; and

a population of reward neurons in each of the channels,
wherein each population of reward neurons receives
input from an environmental input, and wherein each
channel of reward neurons is coupled only to output
neurons in a channel that the reward neuron is part of by
second synapses;

wherein if the environmental input for a channel is positive,
the corresponding channel of a population of output
neurons are rewarded and have their responses rein-
forced;

wherein if the environmental input for a channel is nega-
tive, the corresponding channel of a population of output
neurons are punished and have their responses attenu-
ated; and

wherein the neural network comprises memristors.

2. The neural network of claim 1 wherein the first synapses

and the second synapses have a spike-timing dependent plas-
ticity wherein

Zayn=8Gmax'Sef (V-Egym)

where
gmax is a maximum conductance of the first and second
synapses,
geft'is a current synaptic efficacy between 0 and a maxi-
mum value of geffmax,
Esyn is a reversal potential for the first and second syn-
apses,
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V is a voltage, and
gsyn is a synapse conductance.
3. The neural network of claim 2 wherein

8ef 8ot Bepinaxk (AL)

where

N

(#)

F(AD) =

if
(g5 <0)

then

ger >0

if

(geff > geffmax)
then

geff — geffmax.

4. The neural network of claim 1 wherein each population
of'input neurons, each population of output neurons, and each
population of reward neurons comprise a Leaky-Integrate and
Fire (LIF) device wherein

dv
Cn—y = ~8teat(V = Erea) +1

where

Cm is a membrane capacitance,

1 is a sum of external and synaptic currents,

gleak is a conductance of the leak channels, and

Erest is a reversal potential for that particular class of
synapse.

5. The neural network of claim 1 wherein the populations
of input neurons are connected with equal probability and
equal conductance to all of the populations of output neurons.

6. The neural network of claim 1 wherein the populations
of input neurons are connected randomly to the populations
of output neurons.

7. The neural network of claim 1 wherein the neural net-
work comprises a memristor based neuromorphic processor,
passive and active components comprising transistors, resis-
tors and capacitors, a computer, Or a processor.

8. A neural network for reinforcement-learning and for
action-selection comprising:

a plurality of channels;

a population of input neurons in each of the channels;

a population of output neurons in each of the channels,
each population of input neurons in each of the channels
coupled to each population of output neurons in each of
the channels by first synapses;

a population of reward neurons in each of the channels,
wherein each population of reward neurons receives
input from an environmental input, and wherein each
channel of reward neurons is coupled only to output
neurons in a channel that the reward neuron is part of by
second synapses; and
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apopulation of inhibition neurons in each of the channels,
wherein each population of inhibition neurons is
coupled by third synapses and receives an input from a
population of output neurons in a same channel that the
population of inhibition neurons is part of, and wherein
a population of inhibition neurons in a channel is
coupled by fourth synapses and has an output to output
neurons in every other channel except the channel of
which the inhibition neurons are part of;

wherein if the environmental input to a population of
reward neurons for a channel is positive, the correspond-
ing channel of a population of output neurons are
rewarded and have their responses reinforced;

wherein if the environmental input to a population of
reward neurons for a channel is negative, the corre-
sponding channel of a population of output neurons are
punished and have their responses attenuated; and

wherein the neural network comprises memristors.

9. The neural network of claim 8 wherein the first synapses,

the second synapses, third synapses, and the fourth synapses
have a spike-timing dependent plasticity wherein

Zayn=8Gmax'Sef (V-Egym)

where
gmax is a maximum conductance of the first and second
synapses,
geft'is a current synaptic efficacy between 0 and a maxi-
mum value of geffmax,
Esyn is a reversal potential for the first and second syn-
apses,
V is a voltage, and
gsyn is a synapse conductance.
10. The neural network of claim 9 wherein:

8ef 8 et Gepimard (AL)
where

AL = Tpre = Tpost

N
A+e(ﬁ)
F(an = m)

A_e\ T~
if
(8 <0)

then

ger >0

if

(geff > geffmax)

then

geff — geffimax.

11. The neural network of claim 8 wherein each population
of input neurons, each population of output neurons, each
population of reward neurons, and each population of inhibi-
tion neurons comprise a Leaky-Integrate and Fire (LIF)
device wherein

\4
T —8teak (V — Epest) + 1
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where

Cm is a membrane capacitance,

1 is a sum of external and synaptic currents,

gleak is a conductance of the leak channels, and

Erest is a reversal potential for that particular class of
synapse.

12. The neural network of claim 8 wherein the populations
of input neurons are connected with equal probability and
equal conductance to all of the populations of output neurons.

13. The neural network of claim 8 wherein the populations
of input neurons are connected randomly to the populations
of output neurons.

14. The neural network of claim 8 wherein as a response
increases from output neurons of a channel of which a popu-
lation of inhibition neurons is part of, the inhibition neurons
inhibit the responses from populations of output neurons in
every other channel.

15. The neural network of claim 8 wherein the neural
network comprises a memristor based neuromorphic proces-
sor, passive and active components comprising transistors,
resistors and capacitors, a computer, or a processor.

16. A basal ganglia neural network comprising:

a plurality of channels;

a population of cortex neurons in each of the channels;

a population of striatum neurons in each of the channels,
each population of striatum neurons in each of the chan-
nels coupled to each population of cortex neurons in
each of the channels by first synapses;

a population of reward neurons in each of the channels,
wherein each population of reward neurons receives
input from an environmental input, and wherein each
channel of reward neurons is coupled by second syn-
apses only to striatum neurons in a channel that the
reward neuron is part of; and

apopulation of Substantia Nigra pars reticulata (SNr) neu-
rons in each of the channels, wherein each population of
SNr neurons is coupled by third synapses only to a
population of striatum neurons in a channel that the SNr
neurons are part of}

wherein if the environmental input to a population of
reward neurons for a channel is positive, the correspond-
ing channel of a population of striatum neurons are
rewarded and have their responses reinforced;

wherein if the environmental input to a population of
reward neurons for a channel is negative, the corre-
sponding channel of a population of striatum neurons
are punished and have their responses attenuated;

wherein each population of SNr neurons is tonically active
and is suppressed by inhibitory afferents of striatum
neurons in a channel that the SNr neurons are part of; and

wherein the basal ganglia neural network comprises mem-
ristors.

17. The neural network of claim 16 wherein the first syn-

apses, the second synapses, and the third synapses have a
spike-timing dependent plasticity wherein

Zon~Gmax 8esf (V-Egn)
where

gmax is a maximum conductance of the first and second
synapses,

geft'is a current synaptic efficacy between 0 and a maxi-
mum value of geffmax,

Esyn is a reversal potential for the first and second syn-
apses,

V is a voltage, and

gsyn is a synapse conductance.
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18. The basal ganglia neural network of claim 17 wherein:
Lef Lot Eepmart (AD)
where

AL= Ty = Lpos
At
A+e(a)
F(AD) = N
Aele)
if
(g <0)

then

ger >0

if

(geff > geffmax)
then

geff — geffimax.

19. The basal ganglia neural network of claim 16 wherein
each population of cortex neurons, each population of stria-
tum neurons, each population of reward neurons, and each
population of SNr neurons comprise a Leaky-Integrate and
Fire (LIF) device wherein

15

20

25

20

dv

T = 8teak(V = Epest) + 1

Cin
d

where
Cm is a membrane capacitance,
1 is a sum of external and synaptic currents,
gleak is a conductance of the leak channels, and
Erest is a reversal potential for that particular class of
synapse.

20. The basal ganglia neural network of claim 16 wherein
the populations of cortex neurons are connected with equal
probability and equal conductance to all of the populations of
striatum neurons.

21. The basal ganglia neural network of claim 16 wherein
the populations of cortex neurons are connected randomly to
the populations of striatum neurons.

22. The basal ganglia neural network of claim 16 wherein
aPoisson random excitation is injected into the populations of
SNr neurons.

23. The basal ganglia neural network of claim 16 wherein
uniform random noise is injected into the populations of SNr
neurons.

24. The basal ganglia neural network of claim 16 wherein
the basal ganglia neural network comprises a memristor
based neuromorphic processor, passive and active compo-
nents comprising transistors, resistors and capacitors, a com-
puter, or a processor.



